Every non-normable non-archimedean Köthe space has a quotient without the bounded approximation property
نویسندگان
چکیده
منابع مشابه
Universal Property of Non-archimedean Analytification
1.1. Motivation. Over C and over non-archimedean fields, analytification of algebraic spaces is defined as the solution to a quotient problem. Such analytification is interesting, since in the proper case it beautifully explains the essentially algebraic nature of proper analytic spaces with “many” algebraically independent meromorphic functions. (See [A] for the complex-analytic case, and [C3]...
متن کاملThe Strong Approximation Property and the Weak Bounded Approximation Property
We show that the strong approximation property (strong AP) (respectively, strong CAP) and the weak bounded approximation property (respectively, weak BCAP) are equivalent for every Banach space. This gives a negative answer to Oja’s conjecture. As a consequence, we show that each of the spaces c0 and `1 has a subspace which has the AP but fails to have the strong AP.
متن کاملNon-archimedean Yomdin–gromov Parametrizations and Points of Bounded Height
We prove an analog of the Yomdin–Gromov lemma for p-adic definable sets and more broadly in a non-Archimedean definable context. This analog keeps track of piecewise approximation by Taylor polynomials, a nontrivial aspect in the totally disconnected case. We apply this result to bound the number of rational points of bounded height on the transcendental part of p-adic subanalytic sets, and to ...
متن کاملEvery nonzero c . e . strongly bounded Turing degree has the anti - cupping property ∗
The strongly bounded Turing reducibilities r = cl (computable Lipschitz reducibility) and r = ibT (identity bounded Turing reducibility) are defined in terms of Turing reductions where the use function is bounded by the identity function up to an additive constant and the identity function, respectively. We show that, for r = ibT, cl, every computably enumerable (c.e.) r-degree a > 0 has the an...
متن کاملOptimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces
In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2004
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(04)80020-x